Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization

نویسندگان

  • Alexandre Evsukoff
  • Sylvie Galichet
  • Beatriz S. L. P. de Lima
  • Nelson F. F. Ebecken
چکیده

This paper presents a design method for fuzzy rule-based systems that performs data modeling consistently according to the symbolic relations expressed by the rules. The focus of the model is the interpretability of the rules and the model’s accuracy, such that it can be used as tool for data understanding. The number of rules is defined by the eigenstructure analysis of the similarity matrix, which is computed from data. The rule induction algorithm runs a clustering algorithm on the dataset and associates one rule to each cluster. Each rule is selected among all possible combinations of one-dimensional fuzzy sets, as the one nearest to a cluster’s center. The rules are weighted in order to improve the classifier performance and the weights are computed by a bounded quadratic optimization problem. The model complexity is minimized in a structure selection search, performed by a genetic algorithm that selects simultaneously the most representative subset of variables and also the number of fuzzy sets in the fuzzy partition of the selected variables. The resulting model is evaluated on a set of benchmark datasets for classification problems. The results show that the proposed approach produces accurate and yet compact fuzzy classifiers. The resulting model is also evaluated from an interpretability point of view, showing how the rule weights provide additional information to help data understanding and model exploitation. © 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Using Swarm Intelligence for Improving Accuracy of Fuzzy Classifiers

This paper discusses a method for improving accuracy of fuzzy-rule-based classifiers using particle swarm optimization (PSO). Two different fuzzy classifiers are considered and optimized. The first classifier is based on Mamdani fuzzy inference system (M_PSO fuzzy classifier). The second classifier is based on TakagiSugeno fuzzy inference system (TS_PSO fuzzy classifier). The parameters of the ...

متن کامل

Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis.

An accurate classifier with linguistic interpretability using a small number of relevant genes is beneficial to microarray data analysis and development of inexpensive diagnostic tests. Several frequently used techniques for designing classifiers of microarray data, such as support vector machine, neural networks, k-nearest neighbor, and logistic regression model, suffer from low interpretabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2009